Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8009): 835-843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600381

ABSTRACT

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Subject(s)
Lung Injury , Necroptosis , Orthomyxoviridae Infections , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Female , Humans , Male , Mice , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Influenza A virus/classification , Influenza A virus/drug effects , Influenza A virus/immunology , Influenza A virus/pathogenicity , Lung Injury/complications , Lung Injury/pathology , Lung Injury/prevention & control , Lung Injury/virology , Mice, Inbred C57BL , Necroptosis/drug effects , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/prevention & control , Respiratory Distress Syndrome/virology
2.
Nat Commun ; 14(1): 1999, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037847

ABSTRACT

Monoclonal antibodies (mAbs) directed against the spike of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective therapeutic options to combat infections in high-risk patients. Here, we report the adaptation of SARS-CoV-2 to the mAb cocktail REGN-COV in a kidney transplant patient with hypogammaglobulinemia. Following mAb treatment, the patient did not clear the infection. During viral persistence, SARS-CoV-2 acquired three novel spike mutations. Neutralization and mouse protection analyses demonstrate a complete viral escape from REGN-COV at the expense of ACE-2 binding. Final clearance of the virus occurred upon reduction of the immunosuppressive regimen and total IgG substitution. Serology suggests that the development of highly neutralizing IgM rather than IgG substitution aids clearance. Our findings emphasise that selection pressure by mAbs on SARS-CoV-2 can lead to development of escape variants in immunocompromised patients. Thus, modification of immunosuppressive therapy, if possible, might be preferable to control and clearance of the viral infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Antibodies, Viral , Neutralization Tests , Antibodies, Neutralizing , Immunocompromised Host , Immunoglobulin G , Spike Glycoprotein, Coronavirus
3.
J Exp Med ; 219(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36129445

ABSTRACT

Severity of COVID-19 shows an extraordinary correlation with increasing age. We generated a mouse model for severe COVID-19 and show that the age-dependent disease severity is caused by the disruption of a timely and well-coordinated innate and adaptive immune response due to impaired interferon (IFN) immunity. Aggravated disease in aged mice was characterized by a diminished IFN-γ response and excessive virus replication. Accordingly, adult IFN-γ receptor-deficient mice phenocopied the age-related disease severity, and supplementation of IFN-γ reversed the increased disease susceptibility of aged mice. Further, we show that therapeutic treatment with IFN-λ in adults and a combinatorial treatment with IFN-γ and IFN-λ in aged Ifnar1-/- mice was highly efficient in protecting against severe disease. Our findings provide an explanation for the age-dependent disease severity and clarify the nonredundant antiviral functions of type I, II, and III IFNs during SARS-CoV-2 infection in an age-dependent manner. Our data suggest that highly vulnerable individuals could benefit from immunotherapy combining IFN-γ and IFN-λ.


Subject(s)
COVID-19 , Animals , Antiviral Agents , Immunity , Interferons , Mice , SARS-CoV-2
4.
Nat Commun ; 13(1): 1152, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241661

ABSTRACT

In spring 2021, an increasing number of infections was observed caused by the hitherto rarely described SARS-CoV-2 variant A.27 in south-west Germany. From December 2020 to June 2021 this lineage has been detected in 31 countries. Phylogeographic analyses of A.27 sequences obtained from national and international databases reveal a global spread of this lineage through multiple introductions from its inferred origin in Western Africa. Variant A.27 is characterized by a mutational pattern in the spike gene that includes the L18F, L452R and N501Y spike amino acid substitutions found in various variants of concern but lacks the globally dominant D614G. Neutralization assays demonstrate an escape of A.27 from convalescent and vaccine-elicited antibody-mediated immunity. Moreover, the therapeutic monoclonal antibody Bamlanivimab and partially the REGN-COV2 cocktail fail to block infection by A.27. Our data emphasize the need for continued global monitoring of novel lineages because of the independent evolution of new escape mutations.


Subject(s)
COVID-19/immunology , COVID-19/virology , Pandemics , SARS-CoV-2/immunology , Africa, Western/epidemiology , Amino Acid Substitution , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antiviral Agents/pharmacology , COVID-19/transmission , Drug Combinations , Germany/epidemiology , Global Health , Humans , Immune Evasion/genetics , Mutation , Phylogeography , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
5.
EMBO Rep ; 23(2): e53865, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34927793

ABSTRACT

The ongoing COVID-19 pandemic and the emergence of new SARS-CoV-2 variants of concern (VOCs) requires continued development of effective therapeutics. Recently, we identified high-affinity neutralizing nanobodies (Nbs) specific for the receptor-binding domain (RBD) of SARS-CoV-2. Taking advantage of detailed epitope mapping, we generate two biparatopic Nbs (bipNbs) targeting a conserved epitope outside and two different epitopes inside the RBD:ACE2 interface. Both bipNbs bind all currently circulating VOCs with high affinities and are capable to neutralize cellular infection with VOC B.1.351 (Beta) and B.1.617.2 (Delta) in vitro. To assess if the bipNbs NM1267 and NM1268 confer protection against SARS-CoV-2 infection in vivo, human ACE2 transgenic mice are treated intranasally before infection with a lethal dose of SARS-CoV-2 B.1, B.1.351 (Beta) or B.1.617.2 (Delta). Nb-treated mice show significantly reduced disease progression and increased survival rates. Histopathological analyses further reveal a drastically reduced viral load and inflammatory response in lungs. These data suggest that both bipNbs are broadly active against a variety of emerging SARS-CoV-2 VOCs and represent easily applicable drug candidates.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Mice , Mice, Transgenic , Pandemics , SARS-CoV-2 , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus
6.
Nat Commun ; 12(1): 6405, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737266

ABSTRACT

The origin of SARS-CoV-2 variants of concern remains unclear. Here, we test whether intra-host virus evolution during persistent infections could be a contributing factor by characterizing the long-term SARS-CoV-2 infection dynamics in an immunosuppressed kidney transplant recipient. Applying RT-qPCR and next-generation sequencing (NGS) of sequential respiratory specimens, we identify several mutations in the viral genome late in infection. We demonstrate that a late viral isolate exhibiting genome mutations similar to those found in variants of concern first identified in UK, South Africa, and Brazil, can escape neutralization by COVID-19 antisera. Moreover, infection of susceptible mice with this patient's escape variant elicits protective immunity against re-infection with either the parental virus and the escape variant, as well as high neutralization titers against the alpha and beta SARS-CoV-2 variants, B.1.1.7 and B.1.351, demonstrating a considerable immune control against such variants of concern. Upon lowering immunosuppressive treatment, the patient generated spike-specific neutralizing antibodies and resolved the infection. Our results suggest that immunocompromised patients could be a source for the emergence of potentially harmful SARS-CoV-2 variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Genome, Viral , Humans , Immune Evasion , Immunocompromised Host , Male , Middle Aged , Mutation , Neutralization Tests , Phylogeny , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
7.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34609205

ABSTRACT

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Models, Animal , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...